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The problem of obtaining ordinary differential equations (ODE’s) from chaotic time-series data is ad-
dressed. The vector fields for the ODE’s are polynomials constructed from a basis set that is orthonor-
mal on the data. The method for constructing the model is similar to the integration of ODE’s using
Adams predictor-corrector integration. The method is compared to the usual Euler model and is shown
to be accurate for much larger sampling intervals. In addition, the method used to construct the model
is capable of determining the optimal polynomial vector field for the given data. Finally, we demon-
strate that it is possible to synchronize (in the sense of Fujisaka and Yamada [Prog. Theor. Phys. 69, 32
(1983)] as well as Pecora and Carroll [Phys. Rev. Lett. 64, 821 (1990); Phys. Rev. A 44, 2374 (1991)]) the
model to a time series. Synchronization is used as a nontrivial test to determine how close the model
vector field is to the true vector field. Implications and possible applications of synchronization are dis-

cussed.

PACS number(s): 05.45.+b

I. INTRODUCTION

Experimental time series obtained from measurements
of chaotic systems have been the subject of a great deal of
research in the past decade. Much of this work has been
motivated by the observation that many systems in the
world around us appear to behave in a chaotic manner
[1]. If one can learn how to detect and model such sys-
tems reliably (i.e., to learn the evolution rules), then the
door is open to further applications such as short-term
prediction and/or control. Thus, one of the goals of
current research has been to model the time evolution of
the system under investigation. In this paper we will
focus on modeling dynamical systems that are continuous
in time and are naturally modeled by global autonomous
ordinary differential equations (ODE’s), dy/dt=F[y].
(Modeling discrete time systems was addressed in a previ-
ous paper [2].) Our goal is to build vector fields F, which
produce orbits whose evolution in time mimics the
behavior of the time series. Furthermore, the only a
priori information that will be used is the time series it-
self.

For most situations one is unable to measure simul-
taneously all of the variables necessary to describe com-
pletely the experiment under observation. Often one does
not even know a priori how many variables to measure,
much less the identity of these variables. Under these cir-
cumstances the phase space of the dynamics must be
reconstructed. The difficulty of obtaining experimental
data implies that one usually has a scalar time series
which we denote by s (n)=s(n7),n=1,2,...,Np, where
Np >>1. Next, some method is used to convert the s (n)’s
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into phase space vectors y(n), n=1,...,N. The
theorems of Mafié, Takens, and Sauer, Yorke, and Cas-
dagli lead one to believe that phase space reconstruction
can be performed under many circumstances [3-5].

Local methods for modeling ODE’s have been
developed by a variety of authors [6—10]. These tech-
niques have been shown to be useful for predicting the
evolution of initial conditions as well as the important
problem of noise reduction and signal separation. The
methods model both continuous and discrete time sys-
tems with discrete time mappings that are local in the
phase space. Methods that are more global (but, they
still make explicit reference to the data) have also bee in-
vestigated. These methods employ neural nets [11-13],
radial basis functions [14,15], and exponential functions
[16], as well as polynomials. Like the local methods,
these methods model continuous time dynamics with
discrete time mappings.

There have also been attempts to model continuous
time systems with ODE’s [17-21]. Most researchers at-
tempted to model the dynamics by treating each data
point as an initial value problem for the ODE. A shift of
empbhasis has led at least one group to consider modeling
the dynamics as a two point boundary value problem
[22]. In addition, there has been some interest in model-
ing nonstationary processes with ODE’s [20]. We direct
the reader who wishes a more complete discussion of any
or all of these issues to the papers cited or to one of the
reviews of these topics [23-25]. Our methods differ from
the previous work in several ways. The remainder of this

introduction is devoted to a discussion of these
differences.
3784 ©1994 The American Physical Society
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With the exception of Baake et al. [22], most of the
techniques for modeling time-series data with ODE’s
used a Euler integration approach. This approach mod-
els the time evolution via

y(n+1)=y(n)+7F[y(n)]
or
y(n+1)=y(n)+7F[y(n+1)],

where y(n)=y(n7). The first of these equations is the
more common method and corresponds to explicit Euler
integration. The second method corresponds to implicit
Euler integration. Given these equations, the modeling
problem reduces to finding a suitable vector field F.
These methods work well when the time interval between
measurements, 7, is small. In many cases, 7 must be a
few hundred times smaller than the typical oscillations
that occur in y. For many experimental situations it is
not feasible to use such a small sampling interval. It is
therefore worthwhile to seek a method that is capable of
accurately modeling F when 7 is much larger (say, by an
order of magnitude) than the Euler method would allow.
Addressing this problem is one of the purposes of this pa-
per.

Another problem associated with many of the models
employed by previous researchers involves the question
of truncating the model. Usually, one does not know the
functional form of the vector field. Almost surely it can-
not be written in closed form in terms of known func-
tions. This is especially true in reconstructed phase
spaces. Hence, the best that one can hope for is to model
the vector field of the dynamics as a series expansion in
some basis:

N

p

F[z]= lim 3 pPrl(z) .

Np—>oc 1=0
In this equation, 7'[z] denotes the set of basis functions
and the p'!”’s are parameters whose values must be deter-
mined by the modeling procedure. I is a vector index
that is used to identify a particular parameter or basis
function. In this paper we will employ a class of basis
functions that are constructed to be orthonormal on the
data. Besides the obvious esthetic appeal of orthonormal
functions, this basis set has been shown to be useful when
the data sets are not large and the noise in the data is not
small [2,26,27]. For numerical purposes the series must
be truncated. The typically unanswered question is:
given a basis set 7(z), at what order (what value of N,)
should one truncate the series? This question is of practi-
cal importance and has not been well addressed in the
literature [2,25]. We will use a fitting criterion that is
capable of selecting the optimal order (value of N, ) for
the model, given the data.

The final point addressed is the question: How close is
the model F to the true vector field in the phase space?
To address this question, we study synchronization of the
fitted models to data obtained from the observed system.
As we will show, synchronization can be used as an in-
direct and subtle test of whether or not two dynamical
systems are the same.
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Two systems are synchronized if they follow the same
trajectory. Since the systems we are investigating are
chaotic, a first guess would lead one to think that the sen-
sitive dependence on initial conditions would not allow
two systems to synchronize. However, it has been clearly
demonstrated by Fujisaka and Yamada [28] (FY) as well
as Pecora and Carroll [29] (PC) that two “identical”
models or two ‘“identical” experiments can be made to
synchronize [28,29]. The FY method of synchronization
has been explored using several different dynamical sys-
tems [30-32]. The same can be said for the PC method
of synchronization [33-36).

In this paper we will synchronize a model of the recon-
structed dynamics to a time series. To accomplish this,
we will use the data as the drive system and the model as
the response system. To the best of our knowledge, this
has not been previously reported. Note that FY have
considered the synchronization of chaotic oscillators with
mutual coupling. We modify this method for the case of
the drive and response system. We will use both the
modified FY and the PC method to accomplish the
synchronization. (The papers of FY, originally published
in 1983, do not appear to be well known to the research
community. The method differs from the PC method;
indeed, we will show that the PC method is a special case
of the modified FY method.) Applications of this tech-
nique for nondestructive testing, performance monitor-
ing, and fault detection will be presented in the con-
clusion.

An outline of the remainder of this paper is as follows:
In Sec. II we present the method used to train our vector
fields. The method is based on Adams predictor-
corrector integration and is linear in the fitting parame-
ters. It also allows one to determine the optimal order
for the model. The modified FY and PC synchronization
is also discussed in this section. In Sec. III we present the
results of our numerical experiments. We have investi-
gated four different systems. The first two systems are
numerical models that have been previously investigated.
The third and fourth systems involve experimentally
recorded data from an electronic circuit [32,37] and the
Belousov-Zhabotinskii reaction [38]. Finally, in Sec. IV
we summarize our results, present our conclusions, and
make some speculations.

II. MODELING F

In this section we present the formalism used to obtain
approximations to the vector field F. The discussion has
been broken into three subsections. Each subsection
deals with a different aspect of our modeling and testing
procedures. Section II A presents the functional form of
F. It also introduces the integration model we will use
and the method used to fit the coefficients. Section II B
presents the minimum description length (MDL) cri-
terion that we use to select the optimal model. In section
IT C we present a short discussion of the type of driving
that we have used to synchronize our models.

We will assume that the data is in the form of a vector
time series. Therefore, we have assumed that either all of
the relevant phase space variables have been experimen-
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tally measured, or the phase space has been reconstructed
from a scalar time series. In either case we will denote
the phase space vector at time n7 by y(n) where each
y(n)ER? and 7 is the sampling interval.

A. The vector field and Adams integration

The vector field F will be written as a series expansion
in a polynomial basis. The set of basis functions are con-
structed to be orthonormal on the attractor mapped out
by the phase space vectors y(n).

It is useful to define a d dimensional index vector I that
can be used to denote a particular basis function. The
values taken by the elements of I are the positive integers
and 0. In addition, the elements obey the rule I I
The first component of I is I, and will always mdlcate the
maximum order of the polynomial.

When modeling an experimental time series, the only
piece of a priori information that is known is the experi-
mental data. One can define an invariant density on the
attractor by

plz)= hm —l— 2 d(z—y(n)) .

N—o n=1

This formulation of the density is not unique, but it is the
one most often used for modeling [39]. An orthonormal
set of polynomial basis functions, 7V[z], can be con-
structed on this density via Gram-Schmidt orthogonali-
zation. In brief, one initializes the Gram-Schmidt pro-
cedure by defining 7%[z]=1, where 0=(0,...,0).
Next, the orthonormality between two basis functions is
defined by

<7T(I)|7T(J)> = fdzp(z)ﬂ(l)[z]ﬂ'(”[l]

Using the definition of p(z), orthonormality, and the ini-
tialization 7%[z]=1, one recursively constructs all of the
higher order basis functions. A detailed discussion of
how to construct this basis from data has been previously
presented [2,27]. As such, the details will not be present-
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sary calculations have been performed and the polynomi-
al basis set 7V[z] for large enough values of I is avail-
able.

As stated in Sec. I, we will model the dynamics by
ODE’s of the form

dy _
dt Fly]

P

E (I (I) (1)

where N,=(N,,...,N,). The p'"s are parameters
whose values are to be determined so that, when integrat-
ed, Eq. (1) carries y(n) into y(n +1) as accurately as pos-
sible. [Hence, we formulate the modeling problem as an
initial value problem for Eq. (1).] To accomplish this
task, we imagine a situation where the p'”’s are known
and one seeks to integrate Eq. (1) to determine the y’s.
When F is known (the p'!’s are known), one possible
method of integrating Eq. (1) is the Adams predictor-
correct method. Under this method, one integrates Eq.
(1) from an initial point y(n) to the next point y(n +1) in
one time step of size 7 via

M
yin+D)=y(n)+7 3 a/™Fly(n+1-))] . )
j=0

The a/”s are the implicit Adams predictor-corrector
coefficients. M indicates the order of the corrector por-
tion of the integration. The numerical values of the
a}M »s are known for all values of j and order M [40].
The integration method is implicit since it involves
evaluating F at the point y(n +1) and reduces to implicit
Euler integration when M =0. A discussion of Adams
predictor-corrector integration can be found in most nu-
merical methods texts [40].

A reinterpretation of Eq. (2) reveals that if the y(n)’s
are known, then this equation can be employed as a
means of finding an unknown function F (equivalently,
the p'’s). Equation (1) indicates that F is linear in its
unknown coefficients p'’. A standard least squares
minimization approach to finding these coefficients
[which can be derived from the maximum likelihood

(ML) principle of Gaussian noise [40]] involves selecting
(D)

ed in this paper. Instead, we will assume that the neces-  the p''”’s so as to minimize
J
M p 2
== 2 yin+D—yn)—r 3 a3 pPrlly(n+1-)1]| . 3)
2No* /=, j=0 1=0

In order to implement numerically the ML criterion,
we should permit the values of the a J Mhs to vary. There-
fore, in principle one should minimize y%; over the

‘M "s as well as the pm’s It is important for our model-
mg procedure that XML be quadratic with respect to the
fitting parameters. Therefore, we will assume that the
optimal values of the a ]‘M "s are the ones originally dictat-
ed by the Adams integration method, and we will fix the

](M s at these prescribed values. This still leaves the or-

I
der of the Adams method, M, to be determined, as well as
the order of the polynomial, N,, and the coefﬁcients p!
The procedure we will use to minimize Y% is not the
usual least squares procedure. (However, it can be shown
to be equivalent to the usual least squares procedure
[41]) Minimizing y%; involves choosing numerical
values for p'¥ 50 as to obtain the smallest possible value
for x3;.. Clearly, for these values of p'¥, Eq. (2) will be
nearly satisfied. We infer that choosing numerlcal values
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for p'¥ so as to satisfy Eq. (2) will have the effect of
minimizing Y% . In order to obtain the p'"’s we insert
Eq. (1) into Eq. (2) and project the result onto 7). It is
fairly straightforward to show that this results in

Np M
Gol,I]=3 pg° | 3 a™A[L,k;TK] |, 4)
K=0 k=0

where we have made the following definitions:

N
Gplid)= Jim —= 3 [y(n+1)=y(n],

n=1
X7y(n+1—j)] (5
and
.1 X
A[j,k;J,K]=NlT1w ng 7Vy(n+1—j))
Xr®y(n+1—k)] . (6)

In these equations the subscript S indicates the com-
ponent of a vector. For example, yg(n) is the B com-
ponent of the vector y(n). In addition, from the
definition of orthonormality it is obvious that
A[j’j;JvK]=BJK'

The term in square brackets in Eq. (4) can be defined as

M
X[LK]=73 a™A[1,k;3,K] . @)
k=0

If this definition is inserted into Eq. (4), we obtain the
desired form of the minimization problem:

NP
Gp[1;3]= 3 X[LK]pX . ®
K=0

The form of Eq. (8) suggests a matrix inversion problem.
X[J;K] can be interpreted as the (J,K) element of a ma-
trix. The numerical values of the elements of this matrix
are determined from the known data y(n), the known po-
lynomials 7", and the known values of a™ [see Eqs. (6)
and (7)]. Gg[1;J] can be interpreted as the (J,8) element
of a matrix whose numerical values can be determined
[see Eq. (5)]. Finally, p,(gK’ can be interpreted as the
(K,B) element of an unknown matrix. There are many
methods for solving the problem V=XS where V and X
are known matrices and S is an unknown matrix. For the
numerical experiments we present in Sec. III, we have
used the single value decomposition.

B. The minimum description length criterion

Equation (3) is quadratic in the fitting parameters p'*,
o a unique solution exists which results in a unique mod-
el for the vector field F. Clearly, by increasing the order
of the polynomial (and/or the Adams corrector M), one
can obtain as accurate a model for F as desired. In fact,
if M =0 and the number of p'"’s is equal to N, then it is
easy to get x%,; =0 [40]. For our purposes, N is a few
thousand. In this case, having a polynomial with a few
thousand coefficients (corresponding to N, of a few hun-
dred) is not useful and is not an interesting limit. There-
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fore, one desires an objective criterion for truncating the
series given by Eq. (1). Whatever criterion is used, it
should also be able to determine M, the order of the
Adams predictor corrector. In a series of papers Ris-
sanen has developed the minimum description length
principle for truncating a model [42]. We present a brief
discussion of this principle and direct the reader to the
original papers by Rissanen for a complete discussion of
the MDL principle [42].

The MDL principle is an extension of the maximum
likelihood principle. Let Y denote the entire data set
y(n),n=1,..., N, and let ® denote all of the parameters
in the model. To be specific, ®=(aM,...,aM,
P, ...,p 7). We will use M, to indicate the total
number of nonzero components in the vector ®. The ML
principle selects a model by minimizing

XL = ~logy[P(Y]©)],

where P(Y|®) is the conditional probability of obtaining
Y given ® [40]. The size of the model is determined, in
part, by the number of components in the vector ®. The
ML principle assumes that the number of components of
@® is given. Therefore, it cannot be used to determine the
optimal size of the model.

In contrast, the MDL principle selects a model by
minimizing

XipL= —log,[P(Y,0)],

where P(Y,0)=P(Y|®)P(®) is the joint probability of
obtaining Y and ©, and P(®) is the probability of obtain-
ing ©®. By using a joint probability, the MDL principle is
capable of determining the optimal size of the model by
determining the probability of ®. Another interpretation
of the MDL principle says that the optimal model [within
the class given by Egs. (1) and (2)] is the one that pro-
duces the smallest encoding for the data and the vector
field.

In order to associate a rigorous definition of size to a
model, one assumes that the parameters have finite pre-
cision. Hence, one has coarse grained the parameter
space. Two parameter values are considered identical if
they fall within the same box in the grid. In this way the
entire parameter space can be covered with boxes and
one can associate a unique integer to each box. A partic-
ular model can be associated with a particular value of ®.
The size of the model is the value of the integer that
identifies the box in which ® resides. The probability of
the model, P(®), is the probability of the integer that is
associated with the box that contains ©.

An explicit formula for the function to be minimized
can be obtained by optimizing the precision used to ex-
press the parameters. To see this, let ®* be the center of
the box that holds ®. Then, x%; (®) can be approximat-
ed by a Taylor series expansion which we write as

ML(®) =X} (0*)+1|0—0*|2. 9)

The norm in this equation is given by
Mp Mp
leI*=3 3 0;M,,0,,

j=1k=1
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where ©; is the jth component ® and M, is a metric
tensor given by

3*x*/8aM3a™ 3%y /3a;M3p
ZXZ/an)aa}M) aZX /ap(l)apg)

(The metric tensor is sometimes called the first funda-
mental form [43]. For the standard Euclidean norm the
metric tensor is just the identity matrix. Other, more
complicated, forms of the metric tensor often appear in

|

N

2

P
20'2Nn:1 2

0 1=0

\‘
'Mz

XipL= y(n+1)—y(n)—

I

J

M
2N ——[In(2meN /Mp)+1n(||®||*)]

Minimizing Eq. (10) is the MDL criterion for fitting a
model [42]. The first term in this equation is the usual
x% term. The second two terms in Eq. (10) arise from

P(®) and are associated with the size of the model. Typi-
cally, as one adds more parameters, the first term de-
creases, but the sum of the second two terms increases.
This implies a minima somewhere in the middle. One
chooses the minima of y%;p; as the optimal model. In
practice it is usually the case that the y%; term dom-
inates Eq. (10). Under these conditions, the procedure
for minimizing Eq. (10) involves minimizing the first term
in Eq. (10) for a particular pair of N, and M values. Hav-
ing thus found the p™s, one calculates the second two
terms and adds them to the first term. The minimum of
Eq. (10) can be found by repeating this procedure for all
values of N, and M.

In order to evaluate Eq. (10), the square of the norm of
the parameter vector, [|®||%, must be calculated. It is
tedious but straightforward to show that the norm of the
parameter vector can be written in terms of A(j,k;J,K)
and G(j,J) as

loyp=2

a™pY.G[j;J]. (1D

At this point all of the necessary tools for generating an
optimal model from an experimental data set have been
presented. In order to carry out the modeling, one must
select a range of values for M and N, that will be investi-
gated. In principle, one must choose the maximum and
minimum values of these parameters so that the optimal
solution is inside this range. In general, one does not
have this information a priori. For our numerical experi-
ments we have used M € [0,9] and N, € [0,10]. We find
that for all the test cases we have investigated, the op-
timum was contained within these ranges. For real data
one is attempting to determine a noisy value of y(n +1)
from a noisy value of y(n). We suspect that one’s ability
to make this type of prediction will saturate at a relative-
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research involving general relativity.)

The second term in Eq. (9) can be used to define an el-
lipsoid in the parameter space. Let L, be some length;
then L,=||@—@*|]> defines an ellipsoid in the M, di-
mensional parameter space. The integer associated with
® is given by the ratio of the volume of the ellipsoid,
|®]|% to the volume of the box that defines the grid. By
optimizing the grid size, one obtains the following expres-
sion:

2
7Ply(n+1—j)]

(10)

[

ly low order polynomial. This lack of increase in predic-
tive ability as the order of the polynomial increases is one
of the motivations behind the MDL principle and the
penalty terms in Eq. (10). For these reasons we believe
that the ranges we have used above will be appropriate
for most situations.

The exact procedure we will implement to produce the
models is as follows.

(1) Set the initial values of M and N, to zero.

(2) Solve the matrix problem represented by Eq. (8)
and evaluate x%;. (This is equivalent to performing a
maximum likelihood calculation of minimizing y3; .)

(3) Calculate the norm of the parameter vector by
evaluating Eq. (11).

(4) Calculate x%p;. by evaluating Eq. (10).

(5) If M is less than its maximum value, then increase
M by 1. If M is at its maximum value, then increase N,
by 1 and reset M to zero.

(6) Return to step (2).

After searching all of the values M € [0,9] and N €
[0,10], choose the model with the smallest value of )(MDL

Before leaving this section, we digress with a short dis-
cussion of the benefits associated with the basis functions

D The basis set we have used for the expansion of the
vector field F is not the only one that could be used.
Even with the class of basic functions called polynomials,
we could have used many different basis sets. For exam-
ple, in d =2 dimensions one is tempted to use the stan-
dard basis set given by 1,x,y,x2,xy,y2, etc. For arbitrary
dimension we could write F in terms of the standard basis
as

N d -1
Flz]=3 BV Iz *"' .
1=0 B=1
The standard basis set is not orthonormal on the attrac-
tor given by p[z]. It is known that numerical accuracy
can be increased by performing the calculations with a
basis that is orthonormal on the domain of interest [44].
For many situations one may also observe that certain
parameters are ‘“small.” When this occurs, it is often
desirable to set these parameter values to be exactly zero.

(12)
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By doing so, one expects a slightly poorer fit to the dy-
namics, but this may be well worth the price if the model
becomes sufficiently simple. We would argue that it is
easier to determine the ‘“‘small” parameters when the
basis set is orthonormal. Examples of this benefit will be
presented in Sec. III.

C. Synchronization

We now discuss synchronization of two chaotic sys-
tems. Synchronization involves using an output from one
dynamical system (the driving system) as a driving input
to another dynamical system (the response system). If G
is the vector field of the driving system and F is the vec-
tor field of the response system, then the modified FY
method of synchronization is given by

dy _

—=Gl(y),

;’ (13)
z __ By —

i =F(z)—E-(z—y),

where the matrix E denotes the coupling between the two
systems. We have assumed that yER? and zE R denote
locations in the phase spaces of drive and response sys-
tems. For our numerical experiments the fitted model F
plays the role of the response system. The driving system
G is the experimental system, which is assumed to be un-
known.

An important special case is F=G. In this case the
full system given by Egs. (13) has an integral manifold

z=y. (14)

Trajectories located on this manifold correspond to iden-
tical (synchronous) oscillations in drive and response sys-
tems. Synchronization of the response system z(t) with
chaotic driving y(¢) can be achieved if the coupling E sta-
bilizes a chaotic limit set located on the manifold. Stabil-
ity of synchronization is determined by the conditional
Lyapunov exponents calculated from the linearized equa-
tions:

dd—atz={DF[y(t)]—E}-8z ,

where 6z=z—y is the difference between states of the
response and drive systems. The response system will
reproduce the exact trajectory of the driving system only
if all of the Lyapunov exponents of this equation are neg-
ative. We note that for this type of driving it is always
possible to find a coupling E that will result in synchroni-
zation [28].

For some systems synchronization can be obtained
with a coupling matrix E, which contains only one
nonzero element, E, [45]. When this is true, the driving
is given by the scalar y,. Assume that this type of driv-
ing results in synchronization for a particular vector field
F. Using a d =3 dimensional example, we now show that
this method of driving reduces to the one used by PC in
the E,,— o limit. The equations of the driving and
response systems can be written in the form

dy,
‘EE‘=F1[J71,J’2»}’3] ’
dy,
‘dT=F2[.V1,.V2,,V3] ) (15)
dy,
_dt—=F3[}’hJ’2»J?3]
and
dz,
?=F1[ZI,ZZ,Z3] N
dz,
7=F2[21,22,Z3] y (16)
d23
7=F3[21»22,23]_€(23_}’3) ’

where e=Ej; is the coupling parameter. All other ele-
ments of the matrix E are zero.

In the limit e— o the differential equation for z; can
be reduced to the equation z;=y,;, which describes a
stable five-dimensional manifold of slow motion in the
six-dimensional phase space (y,z). (We have assumed
that the systems synchronize, so for any initial condition
the response system approaches the manifold after a
short transient.) The motion of the response system
along the manifold is given by

dz,
_d;'zFl[zl’zzrh] ’
dz,
—d_t—=F2[zl’22’y3] ’

which are the equations one would obtain from the PC
method for synchronizing a response system by driving
with y;. Thus, PC synchronization is a special case of
modified FY synchronization. FY and PC observed that
under suitable conditions the variables [z,2,,z,=y,] fol-
low the same orbit as the variables [y,,y,,y;] even when
the dynamics of the driving system is chaotic and the ini-
tial conditions for the driving and response systems are
different.

When G=F, synchronous oscillations in the drive and
response systems correspond to trajectories located on
the integral manifold given by Eq. (14). For our numeri-
cal experiments we will always be faced with G#F. The
lack of equality arises because the vector field F is only an
approximation to G, the true vector field that governs the
dynamics. When F#G, synchronous oscillations corre-
spond to an attractor which is no longer on the integral
manifold given by Egs. (14) (unless we have the odd case
where the vector fields F and G are identical in the re-
gion covering the attractor, but differ in other parts of
phase space).

If F and G differ slightly, then the dynamics of
8z=z—y can be approximately described by the linear-
ized equations

ddz
dt

where y(¢) is the chaotic trajectory generated by the driv-

=[DF(y)—E]-6z—[G(y)—F(y)],
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ing system, G. Using proper coupling, one can achieve
near synchronization where the systems oscillate with
0< |8z| << 1. If the value of the coupling parameter E is
small (about the same order as is necessary for the synch-
ronization with F=G), then near synchronization can be
found only if |G(y)—F(y)| <<1 when y is near the at-
tractor. This property enable us to use synchronization
as a nontrivial test for our models in the vicinity of the
attractor. (If we can synchronize F to the time series,
then we conclude F=~G.) As a final note, we point out
that the form of driving given by Egs. (13) permits us to
check each component of the fitted vector field F. This is
in contrast to PC type driving where one of the com-
ponents of the vector field is always removed (see the
€— oo example above).

III. NUMERICAL EXPERIMENTS

This section of our paper reports the results of numeri-
cal experiments using the modeling techniques presented
in Sec. II. The experiments addressed each of the three
purposes specifically mentioned in the Introduction.
Specifically, we will demonstrate the advantages of our
method when modeling data whose sampling interval 7 is
not small. We will demonstrate that the MDL criterion
[i.e., minimizing Eq. (10)] allows one to choose the op-
timal model [within the polynomial class of models given
by Egs. (1) and (2)]. Finally, we will demonstrate that it
is possible to synchronize our models to a time series.
Synchronization between a model and a time series is a
very important phenomenon. It indicates that near the
attractor the model is close to the true dynamical system
that generated the time series.

The numerical experiments will employ four different
dynamical systems. The first system we will investigate is
the well-known Lorenz system of three coupled ODE’s
[46]:

dx

dt =sly=x),

a_

i x—y—xz, (17)
dz

—=—bz+

1 bz+xy ,

where s =16, b=4, and r=45.92. This system has be-
come one of the canonical examples in dynamical systems
theory. It was originally derived as a very crude model
for convection in the atmosphere [46]. Since an exact
representation in terms of polynomials is possible [when
y(n)=(x(n7),y(n7),z(n7))], Egs. (17) represent the
simplest and most direct test of our modeling methods.
The second system we will investigate is a theoretical
model for chemical passivation of metal in an aqueous
solution. Passivation (the loss of chemical reactivity as
the surface of a metal becomes covered) is an important

phenomenon that has been observed to exhibit a variety
of nonlinear behavior. Period doubling [47] and multista-
bility [48], as well as quasiperiodicity [49,50] and homo-
clinic Shilnikov chaos [51], have all been experimentally
observed. The model we will study is given by the follow-
ing coupled ODE’s [52]:

dyY
’&}‘: (1=6p—0on)—9qY ,
dé
—%=Y(1~90—90H>f(eoﬂ>
(18)
+2s90(1—90—-90H)—[r+g(90ﬂ)]90H N
dé,
727‘90“—5'90(1—90_90[{) N

where p=2X10"% ¢=1X10"3, 5=9.7X1075, and
r=2X1075. McCoy et al. [52] examined f (6oy)=1 and
g(6oy)=exp[ —bOgy] with b=5, and we will do the
same.

Even when

y(n)=(Y(n7) ,00y(nt) ,05(n7)),

this model is not a polynomial so it is impossible for our
method to reproduce exactly Egs. (18). As we argued in
the Introduction, when one is forced to build models
from experimentally measured time series, the vector field
will not, in general, be a finite series of known functions.
Hence, one will always be forced to use approximations
when the models are being constructed from experimen-
tal data. For example, the basic form of the equations for
many chemical reactions can often be determined from
first principles. Indeed, this type of consideration lead to
Eqgs. (18) [52,53]. What is unknown is the functional
form of f and g. Given a suitable experimental time
series, our method could be used to determine f and g.
The construction of polynomials that are orthonormal
on the attractor associated with Eqgs. (18) is not an easy
numerical task. In terms of the variables Y, 6o, and Ogy,
the attractor makes very small excursions about the mean
values Y, 6oy, and 8. These variations are ~107>. For
variations that are this small, it is numerically difficult to
obtain a basis set (the 7'!”s) above N,=2. In order to
overcome this limitation, we have performed a linear
change of variables by removing the mean values and re-
scaling the fluctuations via aU=Y —Y, BV =004~ Oop>
yW=0,—0p, and Tx =t. The mean values were deter-
mined from a numerically generated data set of 60000
points and are ¥Y=0.11285. .., §54=0.31913.. ., and
00=0.11661. ... The rescaling parameters were chosen
to be «=0.002, B=0.1, y=0.0004, and 7T=1000. The
values of a, B, and ¥ are close to the standard deviations
of the variables as determined from the data set.
In terms of the new variables, the passivation model is
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du =
o 100[ 4 —5Y]—U—10[V+0.004W] ,
4V _ 1ot AY —rloy [1— 2r4 +204U—10°[Y+r(1+20)]V—4 |T+2,T [1—== | [W
dx 9ou o
~ (19)
+2[U+0.4sW][V +0.004W]—10° [V + 108,y |E exp( —V /2) ,
d—W=50§OH I—E—A +5[1+T]V+0.02T 1—{1 W+0.002 | [V+0.004W]W ,
dx oH 0o r
[
where l"=s50_/r~%, E =exp(—50oy), and ed. (We also rescaled time to 7=0.02.) The a values we

A=1—Y—08,4—08,. Our numerical experiments will
use data from Egs. (18) that have been rescaled in the
manner discussed [y(n)=(U(n7),V(nt),W(nt))].
Therefore, we will actually be modeling Egs. (19). (If
necessary, one could always invert the change of vari-
ables to return to the original Y, 65y, and 6, variables.)
It is worth noticing that the equation of motion for U is
linear and the equation of motion for W has only weak
nonlinearities of quadratic order. This fact will be impor-
tant later in this section.

The final two systems we will investigate must be
reconstructed from experimentally measured time series.
The first system is an electronic circuit whose block dia-
gram is shown in Fig. 1. This circuit has been previously
investigated by one of the authors (Rulkov) [32,37] and
has an attractor that is similar to the one associated with
the so-called Chua circuit [54]. The circuit consists of a
nonlinear amplifier N which transforms input voltage
x(¢) into the output af(x) [32]. The parameter a
characterizes the gain of N around x =0. The nonlinear
amplifier has linear feedback which contains a series con-
nection to a low-pass filter (RC’') and LC resonance. It
has been shown that this circuit can exhibit a transition
from periodic oscillations to chaos via period doubling
cascades, intermittency, and crises of chaotic attractors
[37]). In our experiment we investigated two different
values of the parameter a. The values correspond to
chaotic attractors which appear after a period doubling
cascade. Each chaotic signal x(¢), measured from the
capacitor C, has been amplified and then digitized with
the sampling period 20 usec. This amplified and digi-
tized signal is the scalar time series s (n7) we investigat-

a f(x)

]

x(t) r /f‘m z(t)
—— VN
j’_‘_c it) Ic'

FIG. 1. A schematic diagram of the electronic circuit we in-
vestigated. For this circuit we collected data at R=3.38kQ,
L=145 mH, C=343 nF, C'=225 nF, r=347Q, a sampling
period of 20 us, and a=17.4 and 18.9.

v >

R

investigated are a=17.4 and 18.9. Further details con-
cerning this circuit and its attractor can be found in the
papers referenced above.

The method of time delays was used to reconstruct
phase space vectors from s (n):

y(n)=(s(n),s(n+T),...,s[n+(d—1)T]) .

Time evolution in the reconstructed phase space is given
by y(n)—y(n +1). In order to find the embedding delay
T and the embedding dimension d, we used the methods
of average mutual information and false near neighbors,
respectively [55,56]. The results of the calculations for
a=17.4 are shown in Figs. 2 and 3. The Figures indicate
that the correct embedding time is 7= 10 and the correct
embedding dimension is d =3. The other value of R also
indicated T=10 and d =3.

The second system we have investigated is the
Belousov-Zhabotinski (BZ) reaction. (We are indebted to
Dr. Nicolas Tufillaro for providing us with the experi-
mental data set we have used.) The BZ reaction has be-
come one of the canonical experimental systems for
research into chaotic dynamics [57,58]. For this system
we reconstructed the phase space in the manner em-
ployed by Mindlin et al. [58]. The embedding method is
not time delay. Instead it is a d =3 dimensional com-
bination of filtering and differential embedding. If the
scalar time series is s(n), the first thing we did was re-

15.0 . . .

10.0

M s 5
| |
50 l |
|
e ‘
=1 ‘W‘““;
0ol y . —
0 10 40 50

o
Delay Time T

FIG. 2. The results of an average mutual information calcu-
lation for a time series taken from the electronic circuit shown

in Fig. 1. The curve indicates that the optimal time delay is
T=10.
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FIG. 3 The results of a false nearest neighbor calculation for % o Y
a time series taken from the electronic circuit shown in Fig. 1. X -20 40 40

The graph indicates that the optimal embedding dimension is
d=3.

move the mean value s(n)—s(n)—35. Next, we embed-
ded the data via

z;(n)="7 s(n)exp[—(i—j)/K],
i=1

z,(n)=s(n),
z3(n)=s(n)—s(n—1) .

For our numerical experiments we have used K =100.
Finally, note that each component of z has a different
scale. We found that for our data set the standard devia-
tions of the components of z are o,=33 355, 0,=1513,
and 0;=140. We expect numerical problems if the com-
ponents of the phase space vectors have such different
scales. To overcome this, we identified y ,(n)=z,(n)/0,.
[This rescaling is similar to the rescaling we performed
on the passivation model, Egs. (18).] It has been shown
that this type of embedding is useful when constructing
the template for this attractor. For our purposes this
embedding emphasizes the fact that the world is not al-
ways time delay. Our procedure for modeling F does not
assume a special form for the embedding and, thus,
works for this embedding as well time delay embedding.
We believe that this flexibility is an advantage that
researchers should retain whenever possible.

The attractors associated with the Lorenz equations,
the passivation model, the circuit, and the BZ reaction
are shown in Figs. 4, 5, 6(a), 6(b), and 7. As one can see
from Figs. 4-7, the data sets used to reconstruct the
phase spaces are very clean. These figures show the typi-
cal data sets we will use to construct our models. For all
systems the data sets provide a fair representation of their
attractors, but the representations are by no means even
close to complete.

When modeling a particular system, one should, in
principle, utilize three different data sets. One data set
should be used to construct the orthonormal basis func-
tions 7V, A second data set should be used in the model-
ing procedure to obtain the optimal values for M, N,, and
the p"’s. A third data set should then be used to deter-
mine how well these optimal values model the dynamics.

FIG. 4. The attractor associated with the Lorenz system
given by Egs. (17). In this figure we show N =867 data vectors.
The sampling interval is 7=0.01153 and is approximately the
limit of our ability to determine accurately the correct vector
field.

For our numerical experiments we have not done this.
The following are the reasons for this decision.

The 7''’s are constructed from moments of the distri-
bution [27,2]. In order to obtain the most accurate repre-
sentation for the 7'!”s, the first data sets should provide a
picture of the attractor sufficiently complete that the mo-
ments can be accurately calculated. Clearly, this is not
the case in Figs. 4 and 5. For example, the Lorentz data
set that is shown favors the left lobe over the right lobe.
It is quite likely that a different data set of this size will
favor the right lobe over the left lobe. Thus, the 7'!s
that are constructed on the data set shown in Fig. 4 will
not be orthonormal on typical data sets of this size. A
similar problem can be seen in Fig. 5 and is associated

-3

0
3 3 1.5 X

FIG. 5. The attractor associated with the passivation model
given by Eq. (19). In this figure we show N =5000 data vectors.
The rescaled sampling interval is 7=0.0085.
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FIG. 6. The attractor obtained by embedding data from the
electrical circuit shown in Fig. 1. We show N =3000 data vec-
tors constructed using a time delay of T=10. (a) The resistance
is a=17.4. (b) The resistance is a=18.9.

with the frequency with which an orbit explores the end
of the “ear.” This data set extends into the “ear” approx-
imately 10 times. Other data sets that are this small may
extend into the “ear” a different number of times. Poor
results can be expected if the distribution of the data set
used to calculate the 7'!"s is reasonably different from
the one used to calculate the p'"’s. These difficulties van-
ish in the N — o limit, but we are using relatively small
data sets so the difficulty must be addressed. By using the
same data set to construct both the 7”’s and the p''”’s,
we can overcome this difficulty. To insure a fair test of
the predictive ability of the fitted models, we have always
used a different data set when determining how accurate-
ly the model predicts the dynamics.

|

M
y(in +1)—y(n)—71 3 a™F[y(n +1—j)]

ji=1
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3 -3

FIG. 7. The attractor obtained by embedding data from the
BZ reaction. The embedding is the one used by Mindlin et al.
[58] and N =3000 vectors are shown.

A. Prediction error versus sampling interval

In this subsection we examine the behavior of our mod-
eling method as a function of 7, the interval between mea-
surements, and M, the order of the Adams predictor
corrector. In order to provide the best of all possible
worlds, we have used all three components of the Lorenz
equations, Egs. (17), as our time series:

y(n)=(x(n1),y(n7),z(n7)) .

At this time we are specifically not interested in the abili-
ty of the method to provide the optimal truncation in N,,.
Rather, we are focusing on the behavior of the method as
a function of 7 and M. Therefore, we have taken the li-
berty of fixing N, =2.

Several numerical data sets for the Lorenz system were
generated by integrating Eqgs. (17). Each data set used
the same initial condition. The total interval of time
represented by a data set is T, =N, where N is the num-
ber of points in the data set. For all of our test cases we
always adjusted both N and 7 so that T'r remained con-
stant. As we alluded to above, the construction of the
orthonormal polynomial basis set depends on the amount
of the attractor covered by the time series. By keeping
T fixed and using the same initial condition, we insure
that for each tested value of 7 the basis functions are al-
ways constructed from a data set with the same coverage
on the attractor. In this way each test gets the same
“look” at the attractor. (We found that the results were
qualitatively the same if we did not insist on constant
Tr.) Figure 4 shows the amount of coverage on the at-
tractor that will be used for the numerical experiments.

We will report the following relative prediction error:

2 1172

_1 X
X4 N ,21 ly(n+1)—y(n)[?
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FIG. 8. The relative prediction error for the Lorenz system
(N,=2): (a) The circles, squares, up triangles, diamonds, and
down triangles correspond to 7=0.001, 0.001631, 0.002 659,
0.004 336, and 0.007 171. (b) The circles, squares, triangles, and
diamonds correspond to 7=0.01153, 0.018 80, 0.03066, and
0.05, respectively.

The numerator in this equation is the error between the
actual position of the point y(n + 1) and the predicted po-
sition of the point after one Adams integration step. The
denominator normalizes the error to the size of the jump
in phase space taken by the integration step. The nor-

malization is necessary since a numerator of size 0.001
will probably be acceptable if the denominator is of size
1, but will probably be unacceptable if the denominator is
of size 0.001.

Figures 8(a) and 8(b) indicate the results of numerical
experiments on the Lorenz system. The error y 4 often
decreases by several orders of magnitude when values of
M greater than O are used. We remind the reader that
M =0 corresponds to an implicit Euler integration
method. The majority of the previous research on model-
ing numerical time series used an Euler integration
method for constructing the model. Figure 8 clearly indi-
cates that by using the Adams method can construct an
ODE model (from a time series) that is more accurate
then the Euler method allows. The benefit of this is that
the sampling interval can be greatly increased (in this
case by an order of magnitude) before the errors from the
Adams method are comparable to those of the Euler
method. To further emphasize this point, we present the
coefficients obtained by the methods in Tables I and II.
The Tables indicate that one is able to obtain much better
estimates of the coefficients of F, the vector field, by using
the Adams method (for M >0) instead of the implicit
Euler method.

As a final comment on this experiment, we notice that
none of the methods produced relative errors that were
smaller than ~107°. The data used for the modeling
only contained five decimals places of accuracy. Thus the
errors in the data are ~107°. Given this, we see that for
this test the errors in the Adams method are the same as
the errors inherent in the data. We found similar
behavior when the passivation model was examined. The
Adams method permitted much larger step sizes than the
Euler method.

B. Optimal modeling

In this subsection we will demonstrate that the MDL
criterion provides a means of determining the optimal
value for truncating the orders of the modeling procedure
presented in Sec. II. In Sec. III A we investigated the
behavior of our fitting procedure as a function of the
sampling interval 7. In this subsection we will use a fixed

TABLE I. The polynomial coefficients obtained by modeling data from the true Lorenz equations
with 7=0.001. (M =0) The modeling method is equivalent to an implicit Euler integrator. (M =2)
Except for the constant coefficient of the dz /dt equation (which should all be 0), this model finds the ex-

act coefficients for the Lorenz system.

M=0 M=2
Index B, B, B, B, B,
0 0.000 —0.139 3.018 0.000 0.000 —0.001
1 —16.500 46.264 —0.042 —16.000 45.920 0.000
2 16.139 —1.427 0.043 16.000 —1.000 0.000
3 0.000 0.022 —4.233 0.000 0.000 —4.000
4 0.000 0.005 —0.003 0.000 0.000 0.000
5 0.000 —0.003 1.026 0.000 0.000 1.000
6 0.008 —1.010 0.000 0.000 —1.000 0.000
7 0.000 0.000 —0.017 0.000 0.000 0.000
8 0.000 0.014 0.000 0.000 0.000 0.000
9 0.000 0.000 0.004 0.000 0.000 0.000
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TABLE II. The polynomial coefficients obtained by modeling data from the Lorenz system for
7=0.01153. (M =0) The modeling method is equivalent to an implicit Euler integrator. The fitted
vector field is not very close to the true vector field. (M =9) The coefficients are from the Adams mod-
eling method. These values are much closer to the correct values than the ones produced by the Euler

integrator.
M=0 M=9

Index B, B, B, B, B;
0 0.136 —4.144 33.92 0.000 —0.022 —0.009
1 —22.277 48.626 —0.113 —16.000 45.920 0.000
2 17.942 —5.152 0.248 16.000 —1.000 0.000
3 —0.019 0.419 —6.548 0.000 0.001 —4.000
4 —0.004 0.073 —0.003 0.000 0.000 0.000
5 0.003 —0.061 1.237 0.000 0.000 1.000
6 0.104 —1.090 —0.002 0.000 —1.000 0.000
7 0.000 0.005 —0.183 0.000 0.000 0.000
8 —0.009 0.144 —0.004 0.000 0.000 0.000
9 0.006 —0.011 0.039 0.000 0.000 0.000

sampling interval for the numerical tests. M=5. (The actual values are Yppp=1.45, 0.7034,

In general, we expect that % will be relatively in-
sensitive to changes in M when compared to changes in
N,. This lack of sensitivity can be understood by examin-
ing Eq. (10). Changing M will cause only slight changes
in F (via the p"s) and x2 [the first term in Eq. (10)].
This will be especially true if M >4. [See Fig. 8(a) for
7=<0.004 336 as an example.] The contribution from the
second term is typically small when compared to y%,; and
will grow linearly with M as M, increases. In addition,
only small changes can be expected to occur in ® since
the changes in p'" are small. In contrast, changing N,
can be expected to cause major changes in F and x3;;. In
addition, a large jump can be expected to occur in Mp
and ®. This jump will cause a large change in the second
term in Eq. (10).

A special case for the MDL criterion occurs when the
true vector field in the phase space of the data is a poly-
nomial. The Lorenz system with y=[x,y,z] is an exam-
ple of this. As long as 7 is not too large, the p'"’s for
I,>2 will be very small. In principle they should be ex-
actly zero. Numerically, all values of p'¥’ below a certain
tolerance should be interpreted as zero. For the Lorenz
system we, arbitrarily, set that tolerance to 5.0X 1073,
Any p™’s whose absolute value is less than 5.0X 1073
will be interpreted as zero. The coefficients whose values
are zero will not contribute to ||®||? and should not be in-
cluded when calculating Mp. Thus we expect Yypp to
reach a minimum for N, =2 and remain there as N, in-
creases beyond 2. We hasten to point out that this
behavior will only occur when components of the true
vector field can be exactly represented by finite order po-
lynomials. This type of behavior will not occur in gen-
eral.

In Fig. 9 we present some of the values of Yyp; that
were obtained when using data from the Lorenz equa-
tions with a sampling interval of 7=0.004 336 and a data
set of size N=2306. The figure indicates that y)p; satu-
rates at N, =2 for reasons that we have just discussed.
This means that the optimal choice is N,=2. Although
it is difficult to see in the Figure, comparison of the actual
numerical values indicates that the optimal value of M is

0.6490, 0.6493, and 0.6542 for M =3-7.) Obviously,
Xmpr Will be much larger than the plotted values for
N, <2 (the actual values are ~10%). From Fig. 8(a) we
see that for N, =2 and M =5, the errors associated with
the prediction are the same order as the error inherent in
the data.

A more realistic test for the optimization method
occurs when  modeling the rescaled data
[y(n)=(U(n7),V(n7),W(nr))] from the passivation
model. In this case we are attempting to model Egs. (19)
which clearly cannot be modeled as a finite polynomial.
As stated above, there are numerical problems associated
with calculating the 7'"”s for large values of N,=I,. For
the data shown in Fig. 5 we were able to find all polyno-
mials up to and including N, =I; =5 before encountering
these problems. We contend that a fifth order polynomi-
al should be sufficient for many modeling purposes. The
results of our attempt at optimal modeling are shown in
Fig. 10. The optimal model is N, =5 and M =2.

We have two comments about the vector field obtained
from modeling numerically generated data from the pas-
sivation model. The MDL criterion can only indicate the
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FIG. 9. The values of yyp. for the model that was trained on
data from the Lorenz equations (17). The circles, squares, and
triangles correspond to N, =2, 3, and 4, respectively.
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FIG. 10. The values of yyp; for the model that was trained
on data from the passivation model [Egs. (19)] with 7=8.5. The
circles, squares, diamonds, and triangles correspond to N, =2,
3, 4, and 5, respectively.

best model among all of the models that are tested.
There is no evidence that we have reached the point
where larger values of N, would not be useful. It could
be that a model with N, =6 would produce a lower value
of Ympr. Our second comment is that the model selected
by the MDL criterion is different, and therefore closer to
optimal, than the one that would be produced by the
standard Euler method.

The best test for the optimization method comes from
modeling data obtained from the electronic circuit shown
in Fig. 1. The same N =3000 reconstructed phase space
vectors y(n) that are displayed in Fig. 6(a) were used to
train the model. The rescaled sampling interval for the
data was fixed at 7=0.02. Although the vector field for
this attractor is unknown, it is very unlikely that it can be
written as a finite polynomial. Therefore, the F that we
calculate will only be an approximation to the true vector
field. The results of minimizing Eq. (10) are shown in
Fig. 11. The Figure indicates a clear minimum at N, =4
and M =3. This minimum represents the optimal model

2.80 T

| e .
iy T /
w2 A
n \»\pﬁ::ik/‘/ //,
. " w./

288} p ]

2.50

o

275

<<

o
N
w
»
o
o
~
@
©

FIG. 11. The values of yyp, for the model that was trained
on data from the electronic circuit for a=17.4. The circles,
squares, diamonds, and triangles correspond to N, =3, 4, 5, and
6, respectively.
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for the data set tested. (Notice that this optimal model
could not have been found if an Euler integrator was used
to model the data.) In order to model a data set, we are
required to indicate a noise level o. For the numerical
examples previously investigated, it is easy to control the
noise level by printing only a few digits to the data file.
For experimental systems the noise level is harder to esti-
mate, much less control. For the electronic circuit data
we have estimated the noise level at ¢ =0.01.

At this point it has been demonstrated that the MDL
principle is capable of determining an optimal model
(within the class of models that are polynomials) for an
experimental data set. By optimal we mean that the
method is capable of indicating the value of N, at which
the order of the polynomial should be truncated. It can
also indicate the value of M which produces the best set
of p'™’s. In Table III we show the optimal models for all
of the dynamical systems we have tested. Except for the
passivation model discussed above, we were always able
to find the optimal model. (We could always construct
7'"s for values of N,=I, that were beyond what was
needed for optimal modeling.)

As we alluded to in Sec. II, there are many different
basis sets that can be used for polynomial models. A nat-
ural question that arises is: What benefit is obtained by
using a basis that is orthonormal on the attractor? To
answer that question, we will plot the coefficients associ-
ated with the orthonormal basis set, the pm’s, and the
coefficients associated with the standard basis set, the
B"s from Eq. (12).

Figures 12(a) and 12(b), respectively, show the p'!”s
and the B"”s associated with the N, =5, M =2 model ob-
tained from numerically generated data from the passiva-
tion model, Eq. (18). The circles, squares, and triangles
are the coefficients of F;, F,, and F;, respectively. In
these figures a quadratic model is associated with I < 10.
There is a significant difference between the two figures.
When the standard basis is used, many of the coefficients
for I>10 are of comparable size. It is very difficult to
determine which of the B"s, if any, should be interpret-
ed as zero. Yet an inspection of Egs. (19) indicates that
F, is linear and F; is only weakly nonlinear, while F, is
strongly nonlinear. Furthermore, the nonlinearities in F,
are only quadratic. Thus, all of the B{"’s and B{"s for
I> 10 should vanish, while none of the B{"’s should van-
ish. This type of behavior would be very difficult to
determine from Fig. 12(a). In contrast, Fig. 12(b) clearly
indicates that the p'"’s and the p{!’s vanish for I> 10.
From this figure one can convincingly determine that F,

TABLE III. Optimal models from the MDL criterion.

System N, M XMDL g
Lorenz equations 2 5 0.649 10°°
Chemical equations 5 2 1.797 107*
Electronic circuit 4 3 2.528 1072
a=17.4
Electronic circuit 5 3 2.590 1072
a=18.9
BZ reaction 7 5 10.01 1073
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and F; are at best quadratic.

The conclusion that one draws from Figs. 12 is that the
orthonormal basis presents a much clearer picture of the
relative sizes and importance of the various coefficients
associated with a polynomial model of a vector field. If
one actually needs to know the B'’s we suggest perform-
ing the calculations in the orthonormal basis. After ob-
taining the pm’s, determine which coefficients are zero
and reset these p'”’s to zero. Only then should the B"s
be evaluated. The formula necessary for transforming
from the p'"”’s to the B'”’s can be found in a previous pa-

per [2].
C. Synchronization of models and time series

In their papers Pecora and Carroll point out that
synchronization is structurally stable. They were able to
synchronize two electrical circuits that were constructed
using off the shelf components [29]. No two systems con-
structed in this manner are ever “identical.” [Formally,
if the parameters of the drive and response systems are in
any way different, then the synchronized oscillations do
not reside on the manifold of Eq. (14) and are not “identi-
cal” [32].] Structural stability implies that it should be
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FIG. 12. The coefficients of the polynomial used to model the
vector field F. The circles, squares, and triangles indicate the
coefficients of F,, F,, and F;, respectively. (a) The B'"s are the
coefficients of F when it is written in the form of Eq. (12). (b)
The p"”s are the coefficients of F when it is written in the form
of Eq. (1). For this case the representation using p‘!”’s more
clearly indicates that F, and F, are basically linear.
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possible to synchronize one of the models we have con-
structed to an experimentally measured time series. Our
numerical experiments will attempt to synchronize F’s
trained using data sets from the passivation model, the
electronic circuit, and the BZ reaction to time series from
the respective dynamical systems.

Synchronizing a model to a time series requires that we
integrate the ODE under conditions where the drive vari-
able comes from the time series. For time series data the
value of the drive variable is only known at fixed time in-
tervals. We will investigate modified FY driving as well
as PC driving. When using modified FY driving for large
values of € [see Eq. (16)], the equations of motion will be
stiff since the time scale for the driven equation is
different from that of the undriven equations. We will
use a backwards difference integrator to integrate the
equations of motion when modified FY driving is used
[59]. When PC driving is used, we will use a variable step
size Runge-Kutta integrator [40]. To obtain estimates of
the driving variable at values of time not in the data set,
we linearly interpolated between the vector just before
and the vector just after the time in question. For all of
our tests the data set used as the drive was not the data
set used to train the 7"’s and the p'"’s.

As a preliminary check of our models, F, we selected
an initial condition on their respective attractors and in-
tegrated the fitted vector fields forward in time using both
variable time step Runge-Kutta and variable time step,
variable order Adams integration routines [59,40]. For
all of our test systems (the passivation model, the elec-
tronic circuit at both values of R, and the BZ reaction),
the fitted F’s traced out attractors that were visually the
same as those shown in Figs. 6 and 7.

Each numerical experiments involved three different
orbits: y(n) denotes the orbit that was used as the drive.
w(n) denotes the orbit that results when the initial condi-
tion y(1).is integrated forward in time. This orbit resides
on the attractor. Initially, it is close to y(n) but soon
diverges due to chaos. z(n) denotes the orbit that results
when F is driven using either modified FY or PC driving.
The initial condition we used for the z(n) orbit is not part
of the y(n) data set.

In Figs. 13 we have plotted D,(n)=|y(n)—z(n)| and
D, (n)=|y(n)—w(n)| for the electronic circuit and the
BZ reaction. When modified FY driving is used, we set
€=20. In all of the figures we have used y as the driving
variable. D (n) (the dashed line) starts at zero but quick-
ly grows. The oscillations occur because the two orbits,
y(n) and w(n), are evolving independently on the same
attractor. In contrast, D,(n) (the solid line) starts with a

TABLE 1V. The results of our synchronization tests using
both modified FY and PC driving on all four dynamical sys-
tems.

System PC Driving FY Driving

Passivation model No Yes No No Yes No
Electronic circuit No No Yes No Yes Yes
a=17.4

a=18.9 No No Yes No Yes Yes
BZ reaction No No Yes No No Yes
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FIG. 13. The distances between the orbits y(n), z(n), and w(n). The dashed line is D,(n)=|y(n)—z(n)|, while the solid line is
D,(n)=|y(n)—w(n)|. Synchronization between y(n) and w(n) is clearly demonstrated. (a) PC synchronization of the model for the
electronic circuit and a data set. We used y; as the driving variable and the data is from a=17.4. (b) Modified FY synchronization
of the same model and data. We used €=20. (c) PC synchronization of the model for the BZ reaction and a data set. We used y; as
the driving variable. (d) Modified FY synchronization of the same model and data. We used e=20.

finite separation that decreases to a small value. This im-
plies that the driven orbit has become synchronized to
the drive orbit.

In Table IV we present the results of our experiments
using both modified FY and PC driving on all four
dynamical systems. Each column represents the driving
Y1, ¥, and y; respectively. One sees that for each system
and each driving method we are able to find at least one
means of synchronizing the optimal model F to a data
set.

IV. SUMMARY AND CONCLUSIONS

In this, our final section, we will summarize the results,
and present our conclusions. We shall also make a few
speculations about possible applications for the methods
we have developed.

Our goal was to develop a method for generating a vec-
tor field for an ODE whose dynamics mimicked the dy-
namics of the time series. We wrote the vector field of
the ODE, F, as an expansion in terms of polynomials that
are orthonormal on the attractor given by the data.
These polynomials form a natural basis set in which to
write a polynomial model [2]. The method we developed
for training the expansion coefficients—we called them

p'"’s—involved modeling the dynamics as Adams

predictor-corrector integration [see Egs. (1) and (2)].
When the order of the Adams integration is M =0, this
method reduces to implicit Euler integration. In Figs.
8(a) and 8(b) and Tables I and II we demonstrate that the
Adams method allows one to use a much larger sampling
interval than the Euler method. Thus the Adams method
is an improvement over the Euler method, which was
used by most previous researchers. The sampling inter-
val that is needed if the Euler method is to produce good
results is far too small for most experimental cir-
cumstances. The fact that the sample interval for the
Adams method could be as much as an order of magni-
tude larger than the Euler method implies it is a much
better modeling procedure for those people who wish to
develop ODE models from experimental data.

We also demonstrated that the numerical values for the
expansion coefficients are more reliable when calculated
using the orthonormal basis than they are using the stan-
dard basis. In Figs. 12(a) and 12(b) it was demonstrated
that it is sometimes difficult to decide which coefficients
can be ignored, i.e., set to zero, when the standard basis
set is used. In contrast, it is much easier to determine
which coefficients can be ignored, i.e., set to zero, when
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the orthonormal basis set is used.

The procedure we used to train the model involved
minimizing Eq. (10). One of the major benefits of the
training procedure we have used is associated with the
second and third terms in Eq. (10). These terms are asso-
ciated with the size of the vector field F used to model
the data. This term grows as the number of nonzero pa-
rameters increases. By minimizing Eq. (10), we are able
to obtain the optimal model, from the class of polynomial
models, for the data this is being modeled. This ability to
determine the optimal model is one of the benefits of our
method. We have observed that for all cases the optimal
model was not the one that was produced by the implicit
Euler method. Thus it is the conjunction of the Adams
method of Eq. (2) and the penalty terms of Eq. (10) that
provides the improvement in modeling.

Once one obtains a vector field from the data, the natu-
ral question that must be addressed is: How good is the
model? Put another way, if G(z) is the true vector field
in the phase space, then how close is F(z) to G(z)? One
could just integrate F and look at the attractor to obtain
a visual answer to this question. This is unsatisfactory if
for no other reason than one cannot do this when the
embedding dimension is greater than 3. In previous pa-
pers we examined the spectrum of Lyapunov exponents
and the invariant density [16,2]. In this paper we used an
indirect and subtle test. We attempted to synchronize
the model F to a time series from the experiment. Synch-
ronization will occur only if [G(z)—F(z)]=~0 near the
attractor (see Sec. II). We used two different types of
synchronization procedure. We found that for all of the
test cases, at least one variable could be used as a drive
that would synchronize the optimal model to a time
series. This occurred for both FY and PC driving.
(There were instances where a particular variable would
synchronize the model to the time series when modified
FY driving was used but would not synchronize the mod-
el when PC driving was used. The converse was never
observed.) Since we were always able to synchronize the
optimal model to a time series, we conclude that in the
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vicinity of the attractor the optimal model F is very close
to the true vector field.

We are now in a position to discuss possible applica-
tions. What does one do with a “synchronizer’”? Such
models can be used for many of the traditional tasks asso-
ciated with modeling: detection and classification, for ex-
ample. Suppose one has previously constructed a tailored
synchronizing model for a system of interest. The mod-
eler is then presented with a mystery signal and asked
whether a signal from the system is present (possibly
masked by noise). If the model synchronizes to the in-
coming signal (when noise is present, the model will only
be able to synchronize to within the noise level), then the
system of interest has been detected. Given several dis-
tinct systems, each with a tailored synchronizer, if the in-
coming signal synchronizes to one and not the others,
this would constitute classification. Another potential
area of application is in health monitoring or fault detec-
tion. As with detection, we start with a measured time
series taken from the system of interest and construct a
synchronized model. The numerical model is then run in
tandem with the system as a real-time monitor of its
operating state. If the system undergoes a change of
state, possibly signaling impending failure, then the sys-
tem could be modified or shut down to prevent damage.
The same type of tandem operation could be done as part
of a maintenance program to determine the level of wear
and tear on a device. In short, a “synchronizer” answers
the question: How do we know when a system, which
normally oscillates chaotically, is behaving properly?
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